Selective SSTR4 agonists mediate membrane hyperpolarization and reduced intrinsic firing in CA1 pyramidal neurons from humanized SSTR4 rats and human J. Artinian¹, J. Hubbard¹, F. Gackière¹, D. L. Buhl², K. Schleicher², N. English², M. Zientek², O. Toury¹, B. Buisson¹, R. E. Petroski³, N. J. Broadbent² 1 Neuroservice, Le Puy-Sainte-Réparade, France; ²Takeda Develop. Ctr. Americas, San Diego, CA; ³Neuroservice USA, San Diego, CA ## INTRODUCTON Human studies suggest that aberrant overactivation of the hippocampal network exacerbates neurodegeneration in Alzheimer's Disease (AD). Somatostatin receptor subtype 4 (SSTR₄) is highly expressed in the hippocampus and may play an anticonvulsant role by downregulating CA1 pyramidal cell intrinsic excitability through coupling to Kv7 channels (responsible for the M-current). In addition, SSTR₄ has been shown to promote amyloid-beta (A β) phagocytosis and clearance, and thus SSTR₄ agonists have been proposed for the treatment of AD. Using whole-cell current-clamp recordings in acute hippocampal slices, we examined the effects of novel selective SSTR₄ agonists (TAKEDA proprietary compounds A and B, cpA, cpB) and an antagonist (compound C, cpC) on membrane and firing properties of CA1 pyramidal cells from 6-15-week-old male Sprague-Dawley rats of wildtype (WT) and SSTR₄ humanized knock-in (hSSTR4) genotypes. # METHODS Acute hippocampal slice preparations: WT and hSSTR4 rats CA1 Rec CA3 **A.** Recording configuration in WT and hSSTR4 rats (5x). **B.** Human acute hippocampal slice during the slicing procedure on a conventional vibratome. **C.** Human CA1 pyramidal neuron (PN; 60x). Rec: recording pipette. #### Whole-cell current-clamp recordings: Square pulse protocol ## RESULTS ## CONCLUSION - SSTR₄ agonists J2156 (100 nM) and Takeda proprietary CpA modestly decreased membrane excitability in hSSTR4 rats at RMP. - SSTR₄ agonists CpA and CpB altered those membrane properties at depolarized potentials more efficiently. - SSTR₄ agonists CpA and CpB similarly dampened CA1 pyramidal neurons intrinsic excitability at depolarized membrane potentials by decreasing V_m and firing levels and by elevating the rheobase. - This voltage-dependent effect could reflect a possible functional coupling between SSTR₄ and Kv7 channels, which would confer them the property to selectively affect the hyperexcitable neurons. - Concomitant application of the SSTR₄ antagonist cpC prevented the effect of the agonist cpA, indicating a specific role of SSTR₄. - Preliminary results showed a modest right shift of the input-output curves, indicating a marginal inhibitory effect on human CA1 pyramidal neurons intrinsic firing. # REFERENCES ACKNOWLEDGMENT